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The unsteady pressure field of a ducted impeller 
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Analyses based on a three-dimensional vortex-filament model are presented for the 
unsteady pressure field generated by a ducted propeller. An oscillating part is identified 
in the kernels and absolute terms of the governing equations for the harmonic com- 
ponents, allowing two methods to be developed for the solution of the higher harmonics. 
The first method is exact and is applicable to ducted propellers with practical con- 
figurations (small chord-to-diameter ratio) while the second is approximate but more 
suitable for ducted systems with large chord-to-diameter ratios. The second method 
was applied to a configuration for which experimental data were available and good 
agreement was obtained for pressure harmonic amplitudes downstream of the pro- 
peller and for phase angles upstream of the propeller. 

Special consideration was given to the Kutta-Joukowski condition at  the duct 
trailing edge and a general constraint developed for the doubly coupled governing 
integral equations. 

1. Introduction 
Within the last two decades, there has been a resurgence of interest in the ducted or 

shrouded propeller. Marine application has extended to large tankers as well as to tugs 
and fishing vessels, whilst aeronautical use has included both short and vertical take-off 
craft. An increasing number of theoretical and experimental investigations have been 
reported, a full symposium being devoted in 1973 to the subject of ducted propellers.? 
A survey of earlier work was published in 1962 (Burnell & Sacks 1962) and both a 
review of theory (Weissinger & Maass 1968) and a comparison of theory and experiment 
(Morgan & Caster 1968) were presented in 1968. 

Considerable attention has been given to the time-average or ' steady-state ' velocity 
and pressure fields of a ducted propeller but the higher-harmonic components of the 
flow have been studied less intensively despite their importance for the vibration 
characteristics of the ship-propulsor combination. The present paper develops pro- 
cedures for the computation of the higher-harmonic components and gives a com- 
parison between theory and experiment for the case of a long parallel duct. 

2. Formulation of the governing equations 
The following analysis of the ducted propeller uses the vortex-fiIament model and 

the governing-equation formulation of Ordway, Sluyter & Sonnerup (1960). In the 
original analysis the major variables were non-dimensionalized but for the present 

t Proc. Syrnp. Ducted Propellers, Nat. Phys. Lab., Teddingtorh, England. Roy. Inst. Naval 
Archit., 1973. 
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FIGURE 1. Geometry of the ducted propeller. 
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F~GVRE 2. Shroud and propeller configuration. 

investigation the formulation was reworked to give a normalized representation of 
parameters and equations. Significant advantages, particularly in integral evaluation, 
were found with the latter representation. The details of the formulation are given in 
Dang & Norrie (1975). 

The geometry of the ducted propeller is shown in figure 1 and the shroud and 
propeller configuration in figure 2. The vortex-filament model, shown in figure 3, 
comprises the following : 

(i) bound blade vortices (straight) of strength I?(?,,), 
(ii) shed blade vortices (helical) of strength - r’(rJ,  
(iii) bound shroud vortices (ring) of strength y(z,, S,, r,), 
(iv) shed shroud vortices (helical) of strength - 8y/a8,. 
The duct is axisymmetric with respect to the oncoming flow of axial velocity U and 

rotational velocity Qr.  To remove time dependence, body-fixed co-ordinates have been 
chosen, and since the potential flow is unaffected by shroud rotation, the solution 
obtained will be mathematically equivalent to that for a translating duct with a 
rotating propeller in stationary fluid. 

Except at a vortex filament, potential flow is assumed throughout. The vortices 
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shed from the bound blade and shroud systems are assumed to be carried downstream 
in helical forms without contraction of the slipstream. 

Using the thin-aerofoil approximation, the governing equation is obtained from the 
condition that the flow is tangential everywhere on the shroud: 

V ~ X , )  = q,(x,, R, 0,). i,. (1) 

The total induced velocity vector qi is given by the sum of the induced velocities (at the 
shroud point (x,, R, 0,) being considered) due to the four component vortex systems: 

qi = qr+qr,+qy+qp (2) 

The radial components of the induced fields needed in (1) can be found from the 
BiotiSavart law. 

Velocity induced by propeller bound vortices: 
N 

qr . i, = - &k 2 sin AOl/oRp I?@,) D-3 dr,. 
4n z=1 

(3) 

Velocity induced by propeller shed vortices: 

Velocity induced by shroud bound vortices: 

R 4e 
q . i, = - 1 Ax, 1% Y D - ~  cos A0, do, dx,. 

y 4n -*c --n 

Velocity induced by shroud shed vortices: 

8-2 

FIGURE 3. Vortex-filament model. 
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Substitution of (3)-(6) into (1)  yields the general equation for the inverse-direct 
problem being considered (where it is assumed that the blade circulation and the 
shroud geometry are specified). 

From periodicity considerations, the strength y(2s,0,) of the bound shroud vortices 
can be expressed as the Fourier expansion 

where the complex Fourier coefficient Cm(gS) for positive and negative harmonic 
numbers km, respectively, is given in terms of cosine and sine coefficients B, and 
A m  by 

2c-m(2s)  Bm(2s )  + iAm(281, (8) 

2C+m($s) Bm(2s)  - iArn(2s)- (9) 

It is also assumed that the radial components of the blade bound and shed induced 
velocities can be expressed in the following Fourier series : 

W 

qr.. i, = ACT 2; Crm(A2J exp (imNO,). (11) 
m = -  a, 

Substitution of (7), (10) and (1 1)  into the previously obtained general equation and 
use of the trigonometric integral form of the Legendre function of the second kind and 
half-integer order yields the governing equation in the form 

1 

-1 
'od('s) - G m ( A 2 p )  - c r m ( A 2 p )  = / c m ( 2 v )  [Fym(h$v) + Fy*m(A.4)1 d2v, (12) 

where Fym, I$.,, Crm and Crm are given in terms of the Legendre-function combinations 

(13) 

smN and TmN by 
AA2v 

p y m ( A 2 v )  = -- ShN(Gl), 4n 

The Legendre combinations are defined by 

S , N ( ~ )  & m ~ + + ( a )  + &mN-#(G), (17) 

T,N(O) & m ~ + + ( a )  - QmN-+(O), (18) 

where Qm++ and QmN-S are Legendre functions of the second kind and half-integer 
order and the arguments O,, O,, 0, and 0, are given by 

0, = 1 + )A2A2;, 0, =- 1 + $h2AP&, (191, (20) 
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The general governing equation ( 1 2 )  applies to  all harmonic numbers of the doubly 
infinite Fourier expansion of the shroud bound vortex strength and includes both the 
real and the imaginary terms of the various vortices' contributions. Separation of this 
general equation into real and imaginary parts produces an infinite set of coupled pairs 
of integral equations in the unknowns A ,  and B, covering all harmonic numbers m. 
Following this decomposition, substitution of various Legendre recursion relationships 
and some manipulation yield doubly coupled integral equations (for all m) of the form 

I 
2am2 &) - Br,m(A2p) = S \ Arn(5&) K,(A$?v) d2v - -1 

~- 

where By,, Arm, Art,, K ,  and KA are given by 

The governing equations for the inverse- -direct problem are thus the doubly coupled 
integral equations ( 2 3 )  and ( 2 4 ) .  The unknowns A ,  and B,, for each harmonic number 
m, are the imaginary and real parts of the coefficient C, of the Fourier expansion of the 
shroud vorticity y .  
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3. The steady-state solution 
Form = 0,  (24) vanishes and the steady-state solution is the zeroth-harmonic form 

of (23). This is a Fredholm integral equation of the first kind in which the kernel 
exhibits a weak Cauchy singularity. Solution procedures for this equation are described 
by Ordway et al. (1960), Dang (1972, 1975a, b) ,  Dang & Norrie (1975) and Ordway & 
Greenberg (1961). 

4. The higher-harmonic solution 
4.1. The parameters of the higher-harmonic solution 

The higher-harmonic solutions to the ducted-propeller problem are much more complex 
than those for the zeroth harmonic, requiring solutions to the doubly coupled Fredholm 
equations (23) and (24). Ordway et al. proposed two methods for the higher harmonics 
but did not apply either of these to the computation of a particular configuration. 
Moreover, the possibility of oscillation in the kernel was not considered in these methods 
and their applicability can be questioned since it was found in the present investiga- 
tion that such an oscillating part does exist. The kernels thus comprise regular, singular 
and oscillating parts. It should be noted that, although it appears that the oscillating 
part has not been previously reported, its existence determines the practicality and 
accuracy of the several approximate methods developed for the solution of the coupled 
integral equations, particularly in the case of large A (or, specifically, large 6). 

Before the governing equations (23) and (24) can be solved, the absolute terms 
Brm(A5?p), AFm(A2p) and Afjm(A2p) and the kernel Km(A5?v) and its derivative K,'JA4) 
must be evaluated. From (25)-(29), i t  is seen that these five parameters depend on the 
Legendre functions Q m N a  and SmN and the Fourier integrals hmN and g m N ,  with the 
absolute terms additionally dependent on the specified propeller circulation distri- 
bution I?. 

4.2. Decomposition into regular, singular and oscillating parts 

Consideration of the Fourier integrals hmN and gmN given in (30) and (31) shows (Dang 
1974) that they can each be decomposed into a regular and an oscillating part. The 
regular parts of hmN and gmN are respectively odd and even about = 0 and the 
oscillating parts exist only for AeP > 0. Hence for > 0, 

hmN(A2p) ' v )  = hmNE(A2p, ' v )  + hmNo(A2p, ' v ) ,  

gmN(A2p, ' v )  = gmNfi(A2p,  'v) +gmNo cA2p, ' v ) ,  

(32) 

(33) 

where the regular parts hmNR and gmNR are given by 

hmNfi (Aep)pv)  = -hmN(-A2p?'v) ,  gmNfi(A2p, '9) = gmN(-n2p,t'v) (34), (35) 

and the oscillating parts hmNo and gmNo are given by 

hmNo(A$p, = 2HmN('v) co8 (6A2p),  gmNo(A2p, ' v )  = 2Hn&N('v) sin (aA2p)' (36), (37) 

The functions HmN and G m N  in (36) and (37) are defined by 

where 6: is 6, for the case AeP = 0. 
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The kernels Km(A&,,) and K;(A&J of the governing equations, because of their 
dependence on gmN and hmN respectively, also contain an oscillating part, in this case 
for A$?,, > 0 (since A$ is here the argument for gmN and hmN). These oscillating parts are 



FIGURE 5 .  ‘ Regular’ part of (a;) the kernel Km(A&,) and ( b )  the kernel KA(A2,J; m = 2. 

where HmN( l / p )  and QmN( l/p) are given by 

The kernels K,  and Kh have logarithmic and Cauchy singularities a t  
singular parts of these kernels are 

= 0; thus the 

Subtraction of the oscillating and singular parts from the kernels allows the (true) 
regular parts to be obtained. 
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4.3. Evaluation of the parameters 

Using the quarter-period calculation described by Dang (1373), the Fourier integrals 
hd(A6?*, P,,) and gmN(A$p, Pv) can be computed for all A6?p and Pv,  the case 13, = l/,u 
(duct surface) requiring special attention at 7 = 0. The general form of these integrals 
is shown in figures 4 (a) and ( b ) ,  where hmN and g,N are given for the case of m = 2. The 
oscillatory part for A6?p > 0 may be clearly seen. 

The kernels K ,  and K h  can be computed directly from (28) and (29) using the 
previously determined values for h,, and gmN together with direct calculation of the 
Legendre functions. For m = 2,  the kernelsx, and Kh are shown in figures 5 (a) and (b)  
in terms of their ‘regular parts’ (true regular + oscillating parts). 

4.4. The characteristics of the governing equations 
For the ducted-propeller problem, the governing equations for the higher-harmonic 
components are (23) and (24)’ as shown previously. These are Fredholm-type doubly 
coupled integral equations of the form 

in which the coupling is due to the kernel K ( y - x )  and its derivative K ( y - x ) .  The 
standard methods for solving these doubly coupled integral equations are not suited 
to the characteristics of the kernels and absolute terms in the present case and it was 
necessary to develop a new solution procedure. The geometric expansion method for 
the solution of a singular integral equation was outlined in Dang & Norrie (1975; see 
also Dang 1974, 1975). The method can be extended to doubly coupled integral 
equations, when it becomes based on a Chebyshev series expansion of the unknowns 
and a geometric expansion of the regular part of each kernel. In the following, the 
application of the method to (45) and (46) is briefly outlined. A more detailed explana- 
tion has been given by Dang (1974). 

4.5. Homogeneous and particular solutions 

The presence of the Cauchy singularity and the coupling between the governing 
equations (45) and (46) through the kernels determines the existence of homogeneous 
solutions f H  and gH satisfying 

r l y  f&.gK(y-x)dx+ g H ( X ) K ’ ( y - x ) d x  = 0, (47) 

g , S 1  -1  g , ( z ) K ( y - x ) d x + / l  - 1  j ’H(~)K‘ (y - z )dz  = 0.  

1 

(48) 

Iff?, and g p  denote the particular or inhomogeneous solutions of (45) and (46) the 
general solutions of these equations are given by 
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where A ,  and BR are constants determined by the constraints on the problem. As 
will be shown subsequently, in the case of the ducted propeller these constants are fixed 
by the Kutta-Joukowski condition on the shroud. 

For the particular solution, a perturbation method has been developed (Dang 1972), 
but unfortunately the homogeneous solution cannot be obtained readily in this way. 
The geometric expansion method has therefore been used to determine both the 
particular and the homogeneous solutions. The perturbation method, however, shows 
that if a Chebyshev series approximation is adopted the homogeneous solutions will 
have the following form: 

where the coefficients A and B are given by 

A = - 2/3~,ql0g 2, B = - 2/3a2q log 2. (53h (54) 

Similarly, the particular solutions have the forms 

where the coefficients A,  and Bp should be chosen as 

A, = @(O) A,  Bp = Y(O) B. 

4.6. The geometric expansion method 
Using the polynomial expansions 

for the regular parts of the kernels, together with the previously given approximations 
for the unknown functions [(51) and (52) or (55) and (56)] ,  yields equations of the 
following form to be solved for both the homogeneous and the particular solutions: 
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where the Chebyshev Fourier integrals %, and 9, are defined by 

The special Chebyshev integrals &,, T,, 9, and e; are given respectively by 

For the homogeneous solutions, the ‘effective absolute terms’ Qe and Ye of (61) and 
(62) can be shown to be 

M 

Q e a ( Y )  - ( l + C l ~ g y + r l ~  m=O z p , [ ( l - y / ) y , (? / )+ym+l (y )  
M 

Applying N-term collocation to the pair of equations (61) and (62) transforms these 
to the following pair of matrix equations: 

@e = r,Pa+Qb, Ye = r2Pb+Qa. (7% (77) 

The vector a lists the N unknown coefficients a, the vector b similarly lists the N 
unknown coefficients b,  and the various other matrices are derived by using N values 
of y. 

If all inverses exist, the solution for the a and b coefficients is obtained from 

a = R- l ( r2  Q-lo, - P - l y e ) ,  b = R-l(cl  Q-1 Ye - P- lo , ) ,  (78), (79) 

where R = r1a2(Q-lP - P - l Q ) .  (80)  

4.7. The Kutta-Joukowski condition 
In the vortex model representing the ducted propeller the stagnation point is assumed 
to be at the trailing edge of the shroud both for the total flow field and for each of the 
harmonic flow components. The constraint on the governing equations (45) and (46) is 
therefore 
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Using this relation to determine the constants A ,  and B H  in (49) and (50) yields the 
complete solution to the governing equations in the form 

Since the constants A ,  B, A,  and Bp can be obtained from (53), (54), (57) and (58) and 
the a and b coefficients from (78 )  and (79) for both the homogeneous and the particular 
solutions, the previously unknown functions f(x) and g(x) are now completely and 
uniquely determined . 

4.8. Limiting conditions 
The procedure outlined for solution of doubly coupled integral equations of the form 
of (45) and (46) can in principle be used for any such equation set. In  practice, however, 
it  has been found that with the accuracy possible with the available computer (CDC 
6400, single precision) the method breaks down if (i) the amplitude of the oscillating 
part for any parameter is large in comparison with the regular part and (ii) the period 
of oscillation is ‘small’. As the amplitude of the oscillating part increases and the 
period decreases, the number of collocation points must be increased if the unknowns 
are to be adequately represented and the resulting increase in error in the matrix 
calculation is what finally causes the procedure to break down. 

Thus, although the method is suitable for ducted propellers where the oscillating 
part is small and of large period (or where the error accumulation can be circumvented 
by a very large computational capability) it was not applicable to a particular ducted 
propeller (the ‘Hale configuration ’) for which experimental results were available. For 
this unit, both the amplitude of the oscillating part was large and the period was small 
so the alternative procedure described in the next section was devised to solve the 
governing equations (45) and (46). 

5. The higher-harmonic solution when the oscillating part is dominant 
5.1. Relative injuence of the singular, regular and oscillating parts 

For the Hale configuration, preliminary computation showed that the oscillating part 
was dominant in the kernels and the absolute terms beyond a short distance down- 
stream from the propeller. The kernel Km(A5?v) represents the imaginary part of the 
influence of the shroud shed vortices, whilst its derivative K A ( L U ~ )  derives from the 
real part of the influence of all the shroud vortices (both shed and bound). Thus, far 
away from the vortex point, i.e. MV large, the influence of the true regular part 
(especially in the case of KA(A5?,,), where the true regular part relates to the shroud 
bound vortices) will tend to be smaller than that of the oscillating part due to the 
helical shed vortices. Examination of preliminary results showed that, in the case of 
the kernel Kl(A5?v), by A2v = 0.10 this influence has already decreased to about 10 Oi0 
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FIGURE 6. Solution of the general governing equations; Jr = 0.74. 
(a) A,&,). ( b )  Bm(e8). ., m = 1; - -  ., m = 2. 

of that due to the shed vortices. A similar conclusion can be drawn for K 2 ( A q )  from 
figure 5 (a).  The influence of the singular part of the kernel can also be seen to decrease 
with distance downstream. The regular part of each absolute term similarly decreases 
with distance downstream. 

For the Hale configuration, therefore, since the oscillating part is dominant in the 
downstream region except near the propeller plane, it can be assumed as a first 
approximation that the regular part of the absolute terms and the regular and singular 
parts of the kernels are negligible. As a second approximation, the regular part of the 
absolute terms can be retained but the regular and singular parts of the kernels still 
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FIGURE 7. Coefficient of harmonic pressure Cpm; m = 1. (a) Upstream positions. (b)  Downstream 
positions. -*-, 3% = 0.159; -, 2# = 0.174; ---, 2, = 0.184. 

neglected. The details of the second approximation and its application to this con- 
figuration are described elsewhere (Dang 1974; Dang & Norrie 1975). 

5.2. Results for pressure Jluctuatiom 
From (7), the coefficient of net loading can be shown to be 

00 

Qp<$s) = - 2 C Qm($s) ~ X P  (imNos), 
m=-cu 

D. Q. Dung and D. H .  Norrie 
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FIGURE 8. Coefficient of pressure KDm; Jf = 0.74. (a) First harmonic. (b)  Second harmonic. 
- --, experiment (Hale) ; --, present theory. 

where the coefficient is defined in terms of the inner and outer duct wall pressures by 

For the zeroth harmonic the coefficient reduces to 

Q,,(%) = -&(%)9 (88) 

and for the higher harmonics the net pressure coefficient becomes the inner wall 
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n 
X S  

FIGURE 9. Coefficient of total pressure KPT(2*).  -, experiment (Hale); -0-, 
present theory (sum of two harmonics); -m--, present theory (one harmonic). 

coefficient (since the Hale configuration has a long parallel duct outside which the 
pressure fluctuations can be assumed negligible) 

(89) 

The form used by Hale for the pressure field on the duct inner wall (Hale 1966; Hale & 

Cp,(&s) = - 2{~t , (2~)  sin mN8, + Brn(2s) cos mN8.J. 

Norrie 1966; Norrie & Hale 1968) can be rewritten as 

where auk, = /I, T iy,, /I,,, = Ai cos ern, ym = A,  sin em (91) 
and the coefficient A ,  is as defined by Hale (1966), Hale 81, Norrie (1966) and Norrie & 
Hale (1968). Comparison of (86) and (90) shows that the theoretical and experimental 
results are obtained in similar forms. The two pressure coefficients can be shown to be 
related by the expression 

RE CpHale/Cppresent = $n2Japa* (92) 
The results for A, and B, calculated from the theoretical analysis are shown in 

figures 6 (a) and (b ) .  Using these data, the net pressure coefficient was calculated from 
(89) and the results for several upstream positions are shown in figures 7 (a) and (b ) .  
The results from the present analysis are plotted with Hale's data in the form of the 
net coefficient of harmonic pressure K,,t and net coefficient of total pressure Kpt in 
figures 8 and 9. 

For the first harmonic, downstream of the propeller and at a distance A$$ > 0.05R 
from the propeller plane, there is good agreement between the theoretical and experi- 
mental results for pressure fluctuations. For the second harmonic, the downstream 

t Based on half the peak-to-peak amplitude. 
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FIGURE 10. Comparison of theoretical and experimental phase angles ; upstream 
positions. (a) m = 1. ( b )  m = 2. ., present theory; ---, experiment (mean line). 

results do not show quite such good correlation. The upstream results for theory and 
experiment, although of the same general form, show poor agreement. 

As noted previously, close to the propeller the theoretical results would be expected 
to be in error because of the imperfection of the vortex-line model in representing the 
real system. Th& effect of blade vorticity being distributed along the chord as well as 
the effects of blade thickness and viscosity would be much more pronounced in this 
region than in the far field away from the propeller. The good agreement downstream 
of the propeller (except in the very near field) was to be expected because the approxi- 
mate method of solution retained the dominant oscillating parts of the kernels and 
absolute terms in this region. Similarly, the poor correlation upstream might also have 
been expected because of the absence of oscillating parts upstream and the neglect of 
the singular and regular parts of the kernels in this region. 

5.3. Results for phase angles 

The series (90) used to represent Hale's pressure field on the inner duct surface can 
also be written as 

m 

m= 1 
p = Z a,cos{4m(O--y)+s,}, (93) 
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where am is the modulus of the rhth harmonic of the blade frequency pressure, em is the 
angle by which the mth harmonic leads the propeller-blade position, 0 is the propeller- 
blade angle and y is the angular position of the point being considered. The phase angle 
em can be calculated from the theoretical results using (42) for comparison with Hale’s 
experimental data. 

In  figure 10 the calculated phase-angle data are presented together with Hale’s 
experimental results, for harmonics m = 1,2 .  Only the upstream results are shown 
since the downstream experimental data were too scattered to allow a meaningful 
comparison. The good agreement between theoretical and experimental phase angles 
evident in figure 10 upstream of the propeller requires some explanation in view of the 
relatively poor correlation shown between upstream pressure amplitudes. Examination 
of (89) shows (on dividing by B,) that the phase angle en, depends on the ratio A,/B, 
whereas the pressure amplitude depends on A,  and B, separately. It would appear 
that the neglect of the regular and singular parts of the kernels does not significantly 
affect the ratio A,/B, upstream (at least for the Hale configuration), thus allowing the 
phase angle em still to be predicted with good accuracy. The changes in A,  and Bm 
separately due to the approximation, however, are apparently sufficient to put the 
pressure amplitude considerably in error upstream. 

The research described in this paper was financially supported by the Vniversity of 
Calgary (Dissertation Fellowship), the Defence Research Board of Canada (Grant 
No. 9550-32) and the National Research Council of Canada (Grant No. A4192). 
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